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Understanding the Lunar Hydrogen Cycle
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Observations of the H Cycle

CHACE
In tail

LACE
Nightside

• ARTEMIS Charged Particle Detect. 
• 5 years of ion data (Poppe et al. 2017 JGR)

• CHACE Mass Spec. 
• H2 = 500 – 800 cc in tail (Thampi et al. 2015 PSS)

• LAMP UV Spec.
• H2 = 1200±400 cc at T = 120K (Stern et al. 2013 Icarus)

• LACE Surface Mass Spec. 
• H2 = 6.5e4 cc (Upper Limit), SZA ~ (-1360, 1680, -890)
• (Hoffman  et al. 1973. Proc. Lunar Sci. Conf. 4, 2865)

• M3 IR Observations 
• Rel. abs. ~0.31 ( in tail) & ~0.35 (out tail), 0-10 lat.
• ESPAT ~0.25 (in tail) & ~0.4 (out tail), -55 lat.
• (Cho et al. 2018 JGR; Li et al. 2018 LPSC)
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Solar Wind Implantation and Diffusion

T(K) EV&CB =1.0 eV EInt&GB = 0.5 eV
180 >> Gyrs 12 days
280 31 decades 10 seconds
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• Diffusion characterized by surface T & density of defect sites 
(Starukhina, 2006, 2012) 
• τD = h2exp(E/T)/D0

• Distribution of activation energies (Farrell et al. 2015/2017)
• F(E) ~ exp(-(E – Ea)2/EW

2)
• Ea – peak energy, Ew – width of distribution

We examine the H -> OH -> H2 pathway in surface and exosphere



Simulation Details
• Track dynamic steady state of H surface 

density and exosphere

• Source: Proton Flux
• Losses: Thermal Escape & Photodestruction

Monte Carlo Model
• Implantation Depth: f(Z) 
• Incident Ion Energy: f(Ei)
• Diffusive Lifetime: f(E) 
• Thermal desorption: f(v) 
• Photo-destruction Lifetime
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Sheath ~ 2 days

Sheath ~ 2 days
Tail ~ 5 days

Poppe et al. (2018) 



Previous Work

• Mean M3 surface concentration reproduced 
with: 
• (D0 = 10-12 m2/s, Ea ~ 0.5 eV, Ew ~ 0.078 eV)

• Ea ~ > 0.7eV too much  H retention

• Ea ~ < 0.3eV too little H retention
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Farrell et al. (2017), Tucker et al. (2019)



Surface Concentration at Full Moon

dusk
dawn

noon
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Snapshot of Surface ConcentrationSurface Concentration at 0 latitude
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Surface Concentration at New Moon
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Subsolar Concentration Full/New Moon

New Moon

Full Moon
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• LPSC M3 spectra in and out of tail: Li et al. (2018)
• Model does not account librations or fluctuations of tail due to Solar Events

Model Result



Exosphere Surface Number Density (H2)

night

dayday

• LAMP analyses of H2 in tail  ~1000 cc (Cook et al. LPSC 2016)
• Subsolar density ~ 400cc

Distribution during full moon
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day

nightnight

• Consistent with dusk/dawn asymmetry reported in Cook et al. (2013)
• Subsolar density ~ 2000 cc, 80% larger than when in tail

LAMP: 1400 – 2100 cc
LAMP: 1800 – 2400 cc

Distribution during new moon

Exosphere Surface Number Density H2

daynight night



CHACE Measurements of H2 in Magnetotail

latitude latitude

CHACE Model
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• Dayside Distribution consistent with model calculation
• H2 Lifetime against escape on order of a couple hours



Change in Local Exosphere Density H2 over lunation

Sub Earth Point

Anti Earth Point
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Independent Observations of H2 Seem consistent
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Ø Thampi et al. (2015)……. ‘our estimates 
are significantly lower than the upper 
limits for dawn hours (2100 – 2400 cc), 
reported by Cook Jason et al. (2013)’.

Ø Expect Changes in SW sources with 
lifetimes < ~ 5 days:  thermal escape H2, 
He

Ø Not expected to see changes in species 
like Ne, Ar

LAMP Observations

Cook et al. (2016)



Summary

• Connection between surface volatiles and exosphere content crucial 
to understand volatile cycles

• Local In Situ measurements over a Lunation can provide insight on 
H2O vs. OH and dynamics controlling distribution

• At subsolar point surface concentration 20 ppm (in tail), 2 ppm (out of 
tail), and H2 exosphere order of magnitude decrease in tail.

• Diffusion of H in irradiated silica not well constrained (D0, Ea, Ew) 
requires experiments and theoretical studies
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Loss of hydrogen in the tail

-start

Implanted H atoms with activation energies > 0.5 eV contribute to the 
long term surface concentration
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Hydrogen Diffusion in Silica affected by Defect Abundance
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irradiated

irradiated

Diffusion Prefactor D0 ~ 10-9 – 10-12 m2/s:  Fink et al. (1995) & Griscom et al. (1984)
Activation Energies Ea ~ 0.2 – 0.5 eV: Fink et al. (1995), Griscom et al. (1984), Devine (1985) 



Global H2 Density in Equatorial Slice

New Moon Full Moon
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Implantation Depth vs. Incident Ion Energy
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Poppe et al. (2018) using ARTEMIS data characterizes 
incident flux on surface:
Mean Sheath Flux = 2.4E12 cm-2 s-1

Mean Tail  Flux = 2.2E11 cm-2 s-1

Mean SW Flux = 2E12 cm-2 s-1

For each implanted proton 
Ø Monte Carlo select incident energy 
Ø Incident energy determines implantation depth 
Ø Surface temperature & Monte Carlo selected 

activation energy determines lifetime
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Esposito et al.



Surface OH and Exosphere H2 over lunation
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